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Zeros of the Hankel Function of Real Order 
and of Its Derivative 

By Andres Cruz and Javier Sesma 

Abstract. The trajectories followed in the complex plane by all the zeros of the Hankel 

function and those of its derivative, when the order varies continuously along real values, are 

discussed. 

1. Introduction. Many physical problems require a good knowledge of the location 

of zeros of the Hankel function and/or those of its derivative. For instance, the 

trajectories of the zeros of H(1)(z), for varying real order v, are the k-trajectories of 

the S-matrix singularities for quantum scattering by a hard sphere. Also, the zeros of 

H(')(z) and (d/dz)H(')(z) give, respectively, the poles and zeros of the logarithmic 

derivative of the external Schrodinger wave function in a short-range potential, 

which should match, at the edge of the potential, with the logarithmic derivative of 

the internal wave function. 
Information provided by classical treatises [7], [4] on special functions about the 

zeros of H(')(z) and (d/dz)H(')(z) is rather insufficient. A more recent updated 

revision of the topic has been published by Luke [6]. In the case of integer order, 

v n, two types of zeros of H(')(z) or of (d/dz)H(')(z) are found [1, pp. 373-374], 

[3] (in the principal Riemann sheet, I arg z< ? ): 
(1) An infinite number of zeros for Re z >n just below the negative real 

semiaxis. 
(2) A group of n zeros for I Re z < n which lie along the lower half of the 

boundary of an eye-shaped domain around z = 0. 
Our interest in this paper is on the trajectories followed by those zeros as the order 

varies continuously along real values. Trajectories of this kind, connecting second- 

type zeros, are shown in [5]. We discuss the trajectories described by all the zeros of 

H(')(z) and of (d/dz)H(')(z) in Sections 2 and 3, respectively. It will turn out from 

our study that the distinction between the two types of zeros mentioned above is 

rather artificial, since all first-type zeros become second-type as v increases. 

In view of the well-known relations [1, Eq. 9.1.6] 

(1.1) H(l) (z ) = exp(iv)H(ne)(ze), H(lu )(z ) = exp(iio v)Hi()'(zi), 

we need to consider only nonnegative values of v in our discussion. 
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2. Zeros of H(')(z). We have used the "steepest descent" method to find the 
solutions of 

(2.1) H(')(z) = 0. 

The Hankel function was expressed in terms of Bessel functions, which were 
computed by means of their ascending series expansion. Double precision was used 
in the summation of the series. The order v was considered as a parameter; small 
variations of it allowed us to obtain the trajectories of the zeros of H(')(z) shown in 
Figure 1. 

The trajectories start from the zeros of HgO)(z). All zeros, accurate to lOD, of 
Hgl)(z) for I z I < 158 were obtained by Doring [3]. We shall consider these zeros, zS, 

labelled by an index s = 1, 2,. .. increasing with the absolute value of zs. The same 
label will be used for the corresponding trajectory. As v increases, all zeros move 
upwards, almost vertically, approaching the cut existing along the negative real 
semiaxis. At v= 1/3 the zeros cross the cut and go into the Riemann sheet 
-3v s arg z s -v. They continue their ascending motion and go to infinity as v 
tends to 1/2 from below, along the asymptotes x = (-s + 1/4)v. As v crosses the 
value 1/2, all zeros make a discontinuous jump by Ax = g/2. As v increases, the 
zeros come from infinity along the asymptotes x = (-s + 3/4)v. Their nearly 
vertical motion causes them to cross the cut at v = 2/3, coming back in this way to 
the principal Riemann sheet. They continue, on this sheet, moving downwards until 
the order takes the value v = 1. The positions of the zeros of H(')(z), accurate to 
lOD, have been given by Doring [3]. 

The first zero, zl(v), that for v = 0 had been considered a first-type zero according 
to the classification of the zeros in the two types mentioned in Section 1, is of the 
second type for v = 1. Analogously, every zero zs(v), that should be considered a 
first-type zero for v < s, becomes a second-type one for v > s. 

The behavior of the first-type zeros for v in the interval 1 s v s 2 or, in general, in 
the range n s v s n + 1 is quite similar to that shown in the interval 0 s v s 1. As v 
increases, the zeros move upwards, cross the cut at v = n + 1/3 and, as v tends to 
n + 1/2, go to infinity in the Riemann sheet -3v s arg z s -v along the asymp- 
totes x = (-s + n/2 + 1/4)v, where s > v. They jump by Ax = v/2 as v passes 
n + 1/2 and go down, along the asymptotes x = (-s + n/2 + 3/4)v, towards the 
cut, which they cross at v = n + 2/3. They continue moving downwards in the 
principal Riemann sheet until they stop their descending motion near v = n + 1. 
The second-type zeros (zs, s s n), instead, move downwards and towards the right, 
following the trajectories shown in [5]. They cross the negative imaginary semiaxis at 
v = 2s - 1/2 [1, p. 441] and go to infinity in the fourth quadrant of the z plane as v 
tends to infinity. As is well known, [1, p. 441], the positions of these zeros (for 
different values of s) at half-integer values of v, v = n + 1/2, are symmetrical with 
respect to the imaginary axis. 

It is not difficult to understand why the zeros cross the cut precisely for 
v = n + 1/3 and v = n + 2/3. Equation (2.1) is equivalent to the condition (for v 
noninteger) 
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(-z 2/4) rIr! (-v)(-v + 1) ..(-v + r) 
r=O 

(2.2) 00 
-G,(z) I (-z 2/4) rIr!v(v + 1) (v + r) = 0, 

r=O 

where we have denoted 

(2.3) G,(z) = exp(-ivp)(z2/4)V'F(-v)/F(v). 

For z on the cut, both series in (2.2) are real. So, solutions zs of (2.2) with 
arg zs = -v can exist only if Gp(zs) becomes real. This happens obviously if and only 
if 3v is an integer, v noninteger. 

Now, let us examine more carefully the behavior of the first-type zeros as v 
approaches a half-integer, v - n + 1/2. Using the analytic continuation formula [1, 
Eq. 9.1.37] for the Hankel function, we can write 

H() (z exp(-i2)) = {4Cos2(v7") - I}H,()(z) 
(2.4) + 2 cos( v)exp(-iv )H(2)(z), 

where z is meant to lie in the principal Riemann sheet. Bearing in mind the fact that 
I z -* oo, the right-hand side of (2.4) can be approximated by using the asymptotic 
forms [1, Eqs. 9.2.3 and 9.2.4] of the Hankel functions to obtain, retaining only 
leading terms, 

H~(') (z exp (-i 2 v) 

(2.5) (-)'2( {4 CoS2() 
V7T - I}exp{i(z - vT/2 - 

v4)} 

+2cos( v)exp(-iv )exp{-i(z - v7/2 -7T4)}). 

The zeros of H(')(z) are, therefore, given approximately by the roots of 

(2.6) exp{-i2(z - v/4))} = { 1-4 cos22( v ) }/2 cos(v7). 

Denoting by x5 and ys the real and imaginary parts of zS, we obtain from (2.6) 

(2.7, a) xs 7/4 - kr - (1/2)arg({I -4 cos2( V )}/2cos( v)), kinteger, 

(2.75 b) ys - (1/2)log I I 1-4 CoS2(^ST) )/2 COS(pV7) I . 

It can be seen in (2.7,a) that x5 changes discontinuously by v/2 whenever v increases 
through a half-integer value. Equation (2.7, b) confirms that, as v tends to n + 1/2, 
all zeros go to infinity, their imaginary parts being approximately independent of the 
label s. 

To end this analysis of the zeros of H(')(z) it remains only to consider their 
behavior as the order v tends to infinity. Cochran [2] has discussed the zeros of the 
Hankel function, as function of its order, giving an approximate expression valid for 
large values of the variable. From that expression it is easy to obtain, for large v, 

Zs = v-2- 1/3 exp(-i2v/3)asV1/3 

(2.8) + (3/10)2-2/3exp(-i4v/3)a2'-1/3 + O(v'-) 

where aS denotes the sth one among the zeros of the Airy function of the first kind, 
which are all negative real [1, p. 478]. 
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3. Zeros of (d/dz)H(')(z). In the solution of the equation 

(3.1) (d/dz)H(')(z) = 0 

we have followed a numerical procedure entirely similar to that described in Section 
2. Our results are shown in Figure 2. 

The starting points, for v = 0, of the trajectories are the zeros of HM')(z), given in 
[3]. The behavior of the solutions of (3.1) as v varies from n to n + 1 is very similar 
to that of the zeros of H(')(z). All first-type zeros, except that of smallest absolute 
value, move vertically towards the cut, cross it at v = n + 1/3 and tend to 
infinity, in the Riemann sheet -3g < arg z < -g, along the asymptotes x = 
(-s + n/2 + 3/4)g, with s > n + 1, as v tends to n + 1/2. They jump by Ax= 
g/2 at v = n + 1/2 and go down along x = (-s + n/2 + 5/4)g as v increases 
further. They cross the cut at v = n + 2/3 and move downwards until they stop the 
descending motion near v = n + 1. The smallest first-type zero moves, as v increases 
from n, upwards and to the right, makes a small bump and becomes a second-type 
zero. All second-type zeros go downwards and towards the right, crossing the 
imaginary axis at v= 2s - 3/2 [1, p. 441] and going to infinity in the fourth 
quadrant as v tends to infinity. 

The explanation of the fact that the zeros cross the cut at v = n + 1/3 and 
v = n + 2/3 and of their behavior as v approaches n + 1/2 runs along the same 
lines as in Section 2. The large v behavior can be obtained from [2]. It turns out 

Zs = v-2- /3exp(-i2g"/3)a'v1/3 

(3.2) +2 -2/3 exp(-i47T/3)(3a 2/10 + 1/5a')i-1/3 + O(v-), 

where a' denotes the s th stationary value of the Airy function. 

Appendix. It has been mentioned in Section 2 that the trajectories of the first-type 
zeros of H(')(z) in the complex z plane, as v varies along real values, present relative 
minima for nearly integer values of v. It can be proven that such minima do not 
occur exactly at integer v, the case v = 0 being excepted. By differentiating (2.1), one 
obtains for the slope of a trajectory at a given point 

(A.1) dz/dv = - (aH,()(z)/av)/ (aH,()(z)/az), 

where it is understood that z and v in the right-hand side take the values correspond- 
ing to that point of the trajectory. By expressing the derivatives in (A. 1) in terms of 
the Hankel functions [1, Eqs. 9.1.27, 9.1.66-68] and bearing in mind that (2.1) is 
satisfied, one obtains in the case of integer v 

(A. 2, a) P = ? dz = ? 
dp 

dz _ n! (2/z) n-I (z/2)HkH1)(z) 
(A . 2, b) P n # O-z: - __ _ _ __ _ _ 

dp 2Hn(')1(z) k=O0 (n - k)k!I 

By using again the recurrence relations [1, Eq. 9.1.27] for the Hankel functions and 
(2.1), it is easy to see that the right-hand side of (A.2, b) reduces to an odd 
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polynomial of degree 2n - 1 in z- . For the lowest values of v, dz/dv turns out to 
be 

v = O, dz/dv = O, 
v= 1, dz/dv=-l/z, 
v = 2, dz/dv = - (1/z)(2 + 4/z2), 

v = 3, dz/dv = - (1/z)(3 + 16/Z2 + 64/z4), 

where z is to be replaced by the corresponding zero of H(')(z). A relative minimum 
of the trajectory at a given point should be recognized by a vanishing imaginary part 
of dz/dv at that point. Obviously, the zeros at v = n #7 0 are not relative minima of 
the trajectories. 

A similar conclusion can be obtained for the relative minima of the trajectories of 
the zeros of (d/dz)H(')(z), mentioned in Section 3. Analogously to (A.2), one 
obtains 

(A 3,a) v = 0, dz = ? 

v = n#O, ? dvp 4(1 - 
n2/z2)Hn()(z) 

(A. 3, b) n-i (z/2)k 
(.b)-0(n - )k! [(2k - n)Hk(')(z) - zHk(), 1(z)] 

The right-hand side of (A.3, b) can be reduced to the quotient of an odd polynomial 
of degree 2n + 1 divided by an even polynomial of the second degree, both in z-'. 
For the lowest values of v, dz/dv becomes 

v = O, dz/dv = O, 

v = 1, dz/dv = - (1/z)(1 + 1/Z2)/ (1 -/Z2), 

v = 2, dz/dv = - (1/z)(2 + 16/z4)/ (1 - 4/z2), 

v 3, dz/dv = - (1/z)(3 - 5/Z2 + 48/z4 + 576/z6)/ (1 _ 9/z2). 
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